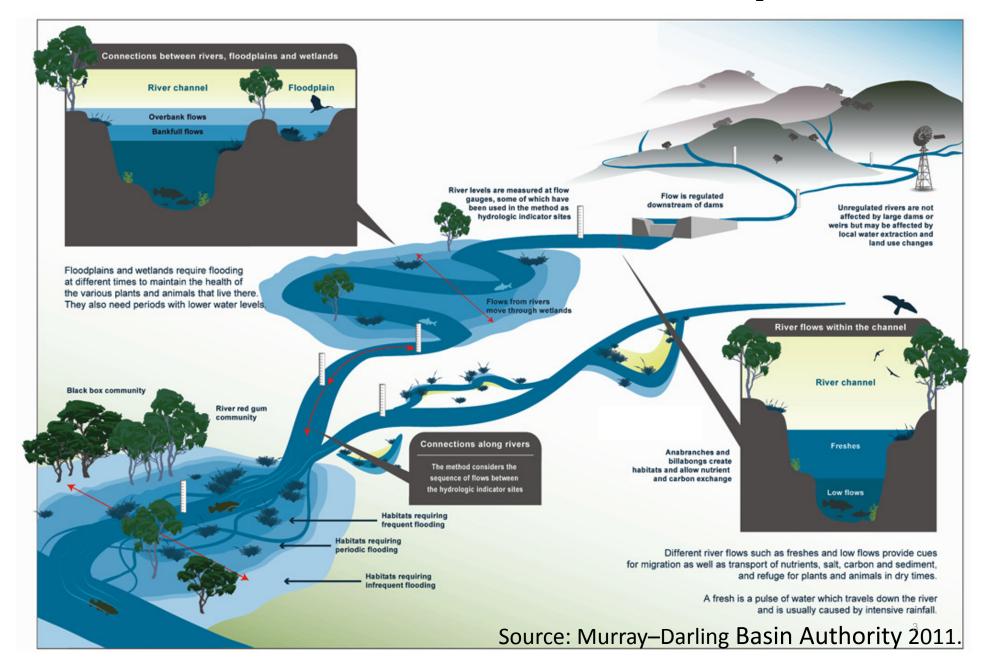
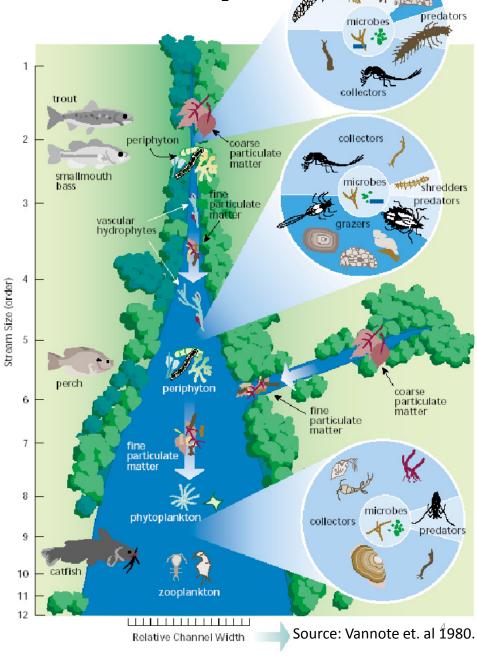
Environmental Monitoring

Pinida Leelapanang KAMPHAENGTHONG


Inland Water Division,
Water Quality Management Bureau,
Pollution Control Department

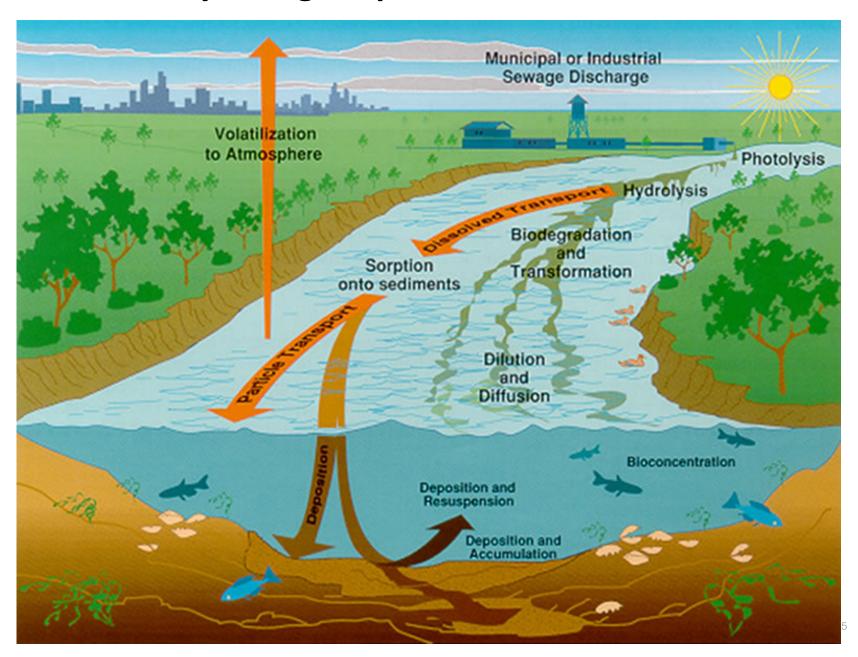
outline

Environment = Riverine Ecosystem


Water Quality Monitoring in LMB

Connections between Basin ecosystems

River Continuum Concept


Connections from upstream to downstream habitats control flow of energy and carbon → Primary production/Respiration → species of aquatic organism in riverine ecosystems

shredders

grazers

hydrological processes in a river

Environmental Monitoring

Physical

- Flow
- Water level
- X-section
- Dept
- Sediment
- Conductivity

Chemical

- Salinity
- Nutrients
- DissolvedOxygen
- Biological Oxygen Demand
- Heavy Metals
- Pesticide

Biological

- Plankton
- Algae
- Macroinvertibrates
- Fish
- Others organism
- Bacteria

Environmental Monitoring in LMB

Water Quality Monitoring

Ecological Health Monitoring

Water Quality Monitoring

Countries	# of Stations (# in main stream)
Lao PDR	11 (5)
Thailand	8 (3)
Cambodia	19 (6)
Vietnam	10 (3)
Total	48 (17)

- Frequency: Monthly
- 3 stations on mainstream in Thailand:
 - 1. Chiang Saen
 - 2. Nakhon Phanom
 - 3. Khong Chiam

Water Quality Monitoring

7 Parameters:

- pH
- Electrical Conductivity (EC)
- Total Suspended Solids (TSS)
- Nitrogen
- Phosphorus
- Dissolved Oxygen (DO)
- Chemical Oxygen Demand (COD)

Assessment: Water Quality Index (WQI)

- 1. For Protection of Aquatic Life
- 2. For Protection of Human Health
- 3. For Agricultural Uses

Water Quality Index

1. For Protection of Aquatic Life

$$WQI = \frac{\sum_{i=1}^{n} p_i}{M} \times 10$$

where,

p_i = points scored on sample day in = number of samples from thestation in the year

M = maximum possible score

Parameters	Target Values
рН	6 - 9
EC (mS/m)	< 150
NH3 (mg/L)	0.1
DO (mg/L)	>5
NO2-3 - N (mg/L)	0.5
T-P (mg/L)	0.13

Rating Score	Class
9.5 ≤ WQI ≤10	A: High Quality
8 ≤ WQI < 9.5	B: Good Quality
6.5 ≤ WQI < 8	C: Moderate Quality
4.5 ≤ WQI < 6.5	D: Poor Quality
WQI < 4.5	E: Very Poor Quality

Water Quality Index

2. For Protection of Human Health

$$WQI = 100 - \left(\frac{\sqrt{F_1^2 + F_2^2 + F_3^2}}{1.732}\right)$$

where,

 F_1 = % of parameters exceed guideline

 F_2 = % of individual test each parameters exceed guideline F_3 = extent of exceed values

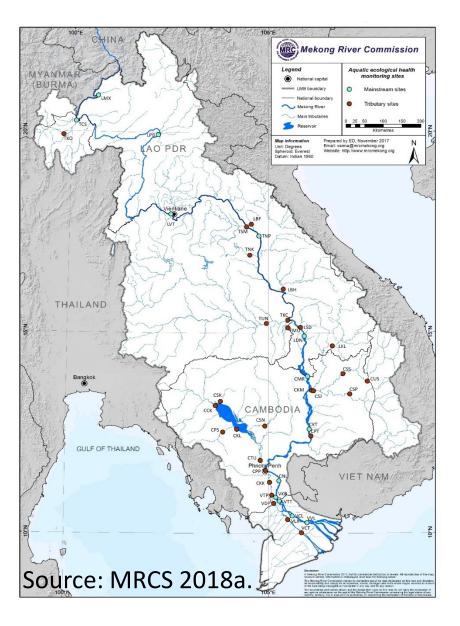
Parameters	Target Values
рН	6 - 9
EC (mS/m)	< 150
NH3 (mg/L)	0.5
DO (mg/L)	4
NO2-3 - N (mg/L)	5
COD (mg/L)	5
BOD (mg/L)*2	4

Rating Score	Class	Description
95 ≤ WQI ≤100	A: Excellent Quality	All measurements are within objectives virtually all of the time
80 ≤ WQI < 95	B: Good Quality	Conditions rarely depart from desirable levels
65 ≤ WQI < 80	C: Moderate Quality	Conditions sometimes depart from desirable levels
45 ≤ WQI < 65	D: Poor Quality	Conditions often depart from desirable levels
WQI < 45	E: Very Poor Quality	Conditions usually depart from desirable levels

Water Quality Index

3. For Agricultural Uses

		Degree of Consequence ¹								
Irrigation Raw Water	Unit	None (Good)	Some (Fair)	Severe (Poor)						
Electrical Conductivity (Poor)										
General Irrigation	mS/m	<70	70-300	>300						
Paddy Rice	mS/m	<200	200 200-480 >480							


Degree of Consequence:

None = 100% yield

Some = 50 - 90% yield

Severe = <50% yield

Ecological Health Monitoring

Countries	# of Stations (# in main stream)
Lao PDR	11 (5)
Thailand	8 (3)
Cambodia	19 (6)
Vietnam	10 (3)
Total	48 (17)

- Frequency: Once every 2 years,Mar Apr (Dry Season)
- 4 stations on main stream in Thailand:
- 1. Chiang Saen
- 2. Songkram River Junction at Nakhon Phanom
- 3. Nakhon Phanom City
- 4. Khong Chiam

Ecological Health Monitoring

Sampling and Data Collection

General physical condition

On site Water quality

- Disturbance Score (SDS)
- Benthic Diatom
- Zooplankton
- Litoral macroinvertebrates
- Benthic macroinvertebrates
- > Abundance (mean no. of individual per sample)
- > Average richness (mean no. of taxa per sample)
- Average Tolerance Score per Taxon (ATSPT)

Ecological Health Monitoring

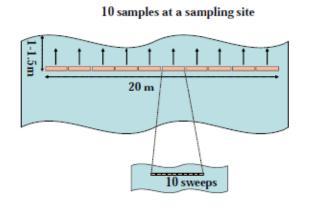
Benthic Macroinvertebrates


Zooplankton

Litoral Macroinvertebrates

Benthic Diatom Collection

Zooplankton Collection



Collect 10L of water and filter through plankton net and transfer to 250mL jar

Litroal Macroinvertibrate Collection

D-Frame and transfer to Tray for sorting.

Benthic Macroinvertibrate Collection

Peterson Grab

Example of Species Identification

Table 7 The benthic diatom distribution for 2017 EHM Thailand.(Cell/ 1cm²)

Species	TNP	TSM	TNK	TMU	TKC	TUN	TCH	TKO
Achnanthes exigua	0	0	0	0	0	0	0	34
Achnanthes crenulata	0	0	0	0	0	0	0	2
Achnanthes exigua var constricta	0	0	0	0	0	2	0	0
Achnanthes minutissima	216	73	28	108	8	422	8	0
Achnanthes oblongella	0	6	0	6	0	42	2	0
Amphora libyca	0	0	0	0	4	0	0	0
Amphora montana	0	10	0	2	0	2	0	0
Amphora sp.1	0	0	0	0	0	0	0	8
Amphora pediculus	0	0	0	0	0	2	0	0
Aulacoseira distans	12	16	0	18	0	0	0	0
Aulacoseira granulata	0	2	0	84	0	2	0	2
Brachysira neoexilis	0	0	0	4	0	0	0	0
Bacillaria paradoxa	2	6	2	0	2	0	4	6
Capartograma crucicula	0	0	0	52	0	6	0	0
Cocconeis placentula	54	64	0	54	16	816	20	178
Cyclotella pseudostelligera	0	0	0	52	0	4	2	0
Cyclotella meneghiniana	44	4	0	0	36	4	2	10
Cymbella minuta	0	0	0	10	0	0	0	32

Example of Species Identification

Table 8 The zooplankton distribution for 2017 EHM Thailand.

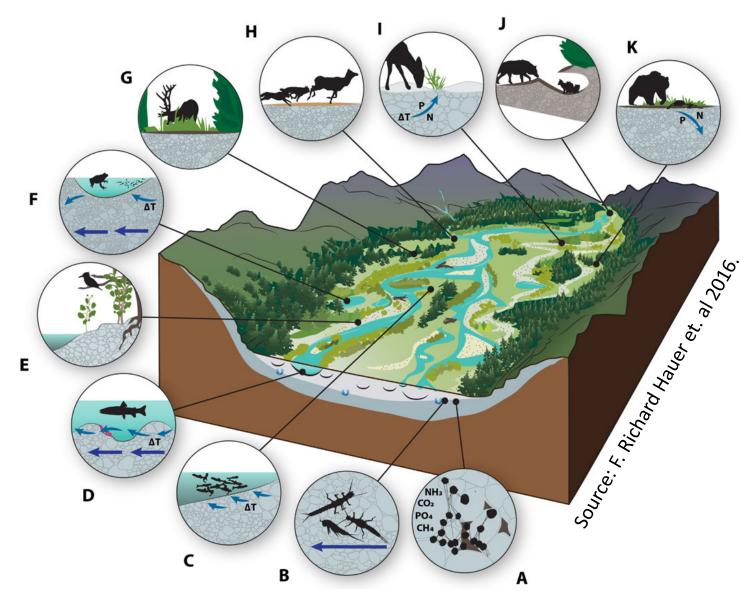
Species	TNP	TSM	TNK	TMU	TKC	TUN	TCH	TKO
Alona verrucosa	0	0	5	0	0	0	0	0
Alonella excisa	0	0	2	0	0	0	0	0
Anuraeopsis coelata	0	1	0	2	0	1	0	0
Anuraeopsis fissa	0	0	1	1	0	62	0	0
Arcella sp.	0	0	0	0	0	1	0	0
Asplanchna sp.	0	0	2	0	0	0	0	0
Bosmina meridionalis	0	0	1	58	1	0	0	0
Bosminopsis deitersi	0	0	63	25	0	4	0	0
Brachionus angularis	0	0	0	0	0	255	0	0
Brachionus calyciflorus ef calyciflorus	0	0	0	0	0	1	0	0
Brachionus caudatus	0	0	0	3	0	1	0	0
Brachionus donneri	0	0	0	6	0	0	0	0
Brachionus falcatus	0	0	2	10	0	69	0	0
Brachionus forficula	0	0	0	7	0	11	0	0
Brachionus quadridentatus var.	0	0	0	1	0	0	0	0
quadridentatus								

Example of Species Identification

Table 10 The benthic macroinvertebrate distribution for 2017 EHM Thailand.

Family and Genus	TNP	TSK	TNK	TMU	TKC	TUN	TCH	TKO
Afromera	0	2	0	0	0	0	0	0
Agapetus	0	0	0	0	0	0	0	2
Amphipsyche	2	0	0	0	0	0	0	0
Anulotaia forcarti	0	0	0	0	0	2	0	0
Aphelocheirus (nymph)	0	0	0	0	0	0	0	7
Baetis	0	0	0	0	0	0	0	12
Bezzia	0	0	15	5	1	6	0	3
Burmagomphus	0	0	1	0	0	0	0	0
Caenis	2	0	0	0	0	6	1	4
Caridina	0	0	8	2	0	34	0	0
Cercion	0	0	1	0	0	1	0	0
Cerobrachys	2	0	0	0	0	0	0	0
Cheumatopsyche	4	0	0	0	0	0	0	34
Chlorotepides	1	0	0	0	0	0	0	0
Clea (Anentome)	0	0	1	2	0	2	0	0
Clypeocaenis	2	0	0	0	0	0	0	0
Companianidos (como unlunorum)	^	^	1	^	^	1	Λ	22 ^

Ecological Health Assessment


Class (compare to reference site)

A: Excellent B: Good C: Moderate D: Poor

		Diatom			Diatom Zooplankton			Littoral			Benthos				
								sweep							
		Ab	Av	Α	Ab	Av	Α	Ab	Av	Α	Ab	Av	Α	No.	
		un	era	TS	un	era	TS	un	era	TS	un	era	TS	me	
		da	ge	PT	da	ge	PT	da	ge	PT	da	ge	PT	etin	
Site	Sampling date	nc	ric		nc	ric		nc	ric		nc	ric		g	Class
code	Sampling date	e	hn		e	hn		e	hn		e	hn		gui	Ciass
			ess			ess			ess			ess		deli	
														ne	
TNP	05-Mar-2008	Y	N	N	Y	N	Y	N	N	Y	Y	Y	Y	7	В
TNP	31-Mar-2011	Y	Y	N	N	N	N	Y	Y	Y	Y	Y	Y	8	В
TNP	15-Jun-2013	Y	Y	N	Y	Y	Y	Y	Y	N	Y	Y	Y	10	A
TNP	1-Apr-2015	Y	Y	Y	N	N	N	Y	Y	Y	Y	Y	Y	9	В
TNP	2-May-2017	Y	Y	N	N	N	N	N	N	N	Y	Y	N	4	C

References

- F. Richard Hauer et. al 2016. *Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances: 2 (6).* retrieved from http://advances.sciencemag.org/content/2/6/e1600026.full
- MRCS 2018a. Draft Report on the 2015 biomonitoring survey of the lower Mekong River and selected tributaries. The Mekong River Commission Secretariat.
- MRCS 2018b. 2016 Lower Mekong Regional Water Quality Monitoring Report.
 The Mekong River Commission Secretariat. retrieved from http://www.mrcmekong.org/assets/Publications/2016-Lower-Mekong-Regional-Water-Quality-Monitoring-Report-14June18-L-Res.pdf
- MRCS 2010. Biomonitoring Methods for Lower Mekong Basin. The Mekong River Commission Secretariat.
- Murray—Darling Basin Authority 2011. Murray—Darling Basin Authority annual report 2010-11. retrieved from https://www.mdba.gov.au/sites/default/files/archived/annualreports/2010-11/index.html
- PCD 2018. Draft 2017 Ecological Health Monitoring in Thailand.
- Vannote et. al 1980. The Riverine Continuum Concept. retrieved from https://www.colorado.edu/geography/geomorph/envs_5810/vannote_1980.pdf

Thank You For Your Attention