

Hydropower Sustainability Forum

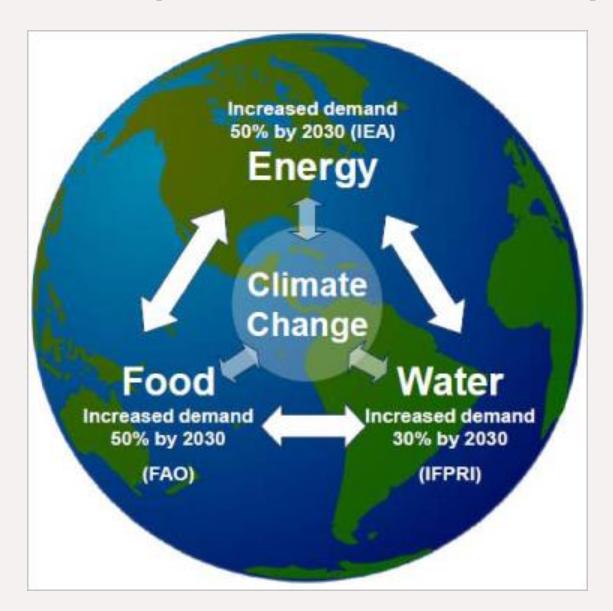
New Frontiers in Sustainable Hydropower Development

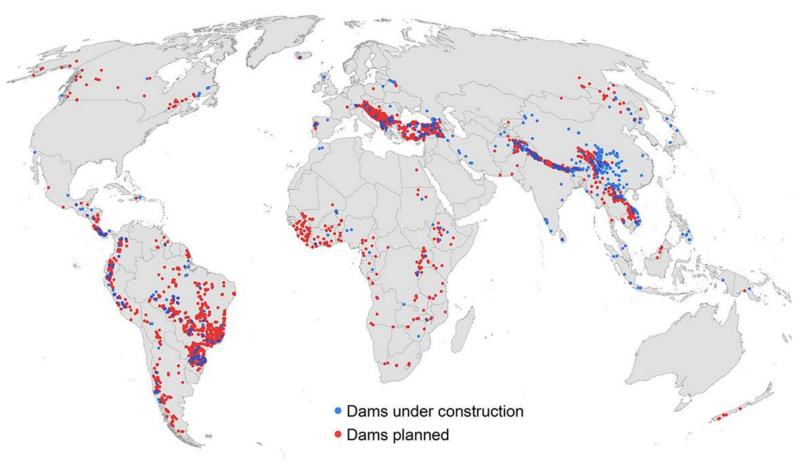
What I have Heard (Power pointing you to death!)

Half Full or Half Empty?

Theory - practice

Setting the Stage


- Sustainable Development Goals:
 - SDG 7 Sustainable Energy for All
 - SDG 6 Sustainable Water for All
 - Paris agreement
- Keynote Professor Pete Loucks
- Mekong «the Mother of Water»
 - Nile, Danube; Orange, ++
- Sustainable hydropower
 - Sound basin and water resources management
- But what does sustainability look like?



Water Equation - Does it Add Up?

Need Dams - Daming Rivers - Worldwide

> 57,000 existing large (15m+) dams worldwide. 3,700 dams (1,700 GW) planned or under construction

Source: Zarfl et al. (2015), *Aquat. Sci.*

Hydropower – Supporting other Renewables

New role for hydropower - still need for environmental design!

ICT?

Batteries

Stanford - Jacobson:

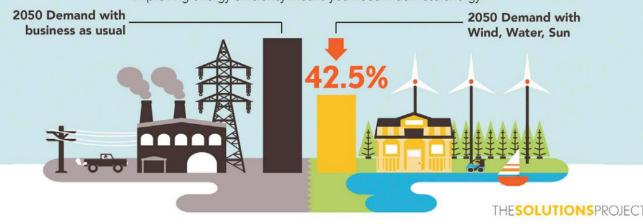
Conventional hydropower ~ 16.3% of the world electric power supply; 1.058 TW

Average capacity factor 42.0%

Capacity of hydropower is assumed to be the same as in 2015.

No new dams needed
Increase capacity factor – up to 50%

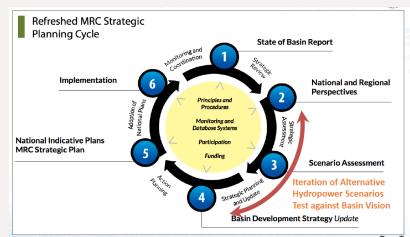
100% IN 139 COUNTRIES


Transition to 100% wind, water, and solar (WWS) for all purposes (electricity, transportation, heating/cooling, industry)

JOBS CREATED 52 MILLION

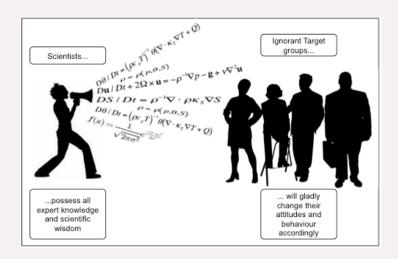
JOBS LOST 27.7 MILLION

Using WWS electricity for everything, instead of burning fuel, and improving energy efficiency means you need much less energy.



Promising Tools - Reflections

- Not project by project approach
- Complex matter
- Many similar terms!
 - We all have our pets, acronyms and lingo!
- Integrated Water Resources Management
 - Water food energy nexus
 - Easy to talk about challenging/difficult to implement
 - Governance sectorially oriented difficult to think across sectors
 - Cuts across administrative boundaries at all levels
 - No country has designed administrative boundaries based on river basins!
- Strategic Portfolio Planning
- Process intensive many stakeholders involved
- Political economy of water



From Science to Decision Making

- What does sustainability look like?
- Communication
 - Lead to behavioural change
 - Build confidence and trust
 - Developers need a communication strategy
 - Engineer not a politician!
 - Heard this several times!
- Biased media:
 - Fake news
 - Fake science!
- Scientists have to be bolder!
 - Don't always focus on uncertainty what you don't know
 - Focus on what you know
 - Better to be approximately right
 - Decisions have to be made!
- Will never get all data we need
- How to make the case?

Policies, Guidelines and Planning

- Integrated river basin approach only way forward
- But how?
 - From science to policy and decision making
- Sustainability?
 - Have to accept that the river will change can't mitigate 100%
 - Social sustainability
- Do we lack guidelines and standards?
 - IHA Protocol; IFC/WB; WCD Acceptability by stakeholders?
 - Guidelines for Sustainable Hydropower Practice
 - Mekong a wide variety of studies, guidelines and tools new being developed
 - Danube no HP guidelines/standards (EU Directives)
 - Technical or political question?
 - Trade-offs required (Pete: Kill the birds!)
- Performance standards rather then prescriptive design
- Compliance monitoring and adaptative management
- Allows developers the flexibility to propose the best solutions

Sustainable Hydropower Design and Operation

Key vulnerabilities in the Mekong:

- Advanced fish passage system can the fish use them?
- Sediments and water quality

Possible solutions – restore connectivity:

- Natural bypass; Sub-divided projects smaller head; Seasonal storage
- Barrage Energy impacts could loose 30%
- PPA implications pay for available power (MWs not kWh)
 - integrated river basin optimisation
 - adaptive environmental management for fish, water quality and sediment
 - View of system operator?

View of the developers:

- Water = Energy = Revenue
- Return on investment (15-20%) legal requirements and compliance with standards
- Multi-purpose often a scary term for developers!
- Resettlement local communities

Cascade operation

- Need for a basin organization operating rules
- Climate change new risk factor
 - HP more profitable in Norway and Tanzania

Governance, Cooperation and Practice

Integrated basin-wide approach

- Capture benefits by cooperating benefit sharing
- Data and information sharing Complex systems Need for modelling
- Climate change water scarcity reinforces the need for cooperation.

Transboundary water agreements – commissions

- Good examples: MRC; Danube; ORASECOM
 - Convening platform
- Reasonable and equitable use / Prior notification UN convention on transboundary waters
 - Upstream hegemon
 - Regional, economic cooperation
- Lack of trust and lack of willingness to co-operate
 - TK5 changed relations between ETH and SUD
 - Still a long way to go....
 - Track II cooperation/negotiations

Political problem – not technical

- Political science
- Role of external actors excellent story from the Mekong
- Water as entry point for cooperation.
 - Often 'mushroom' of other cooperation platforms

Role of government – set the rules

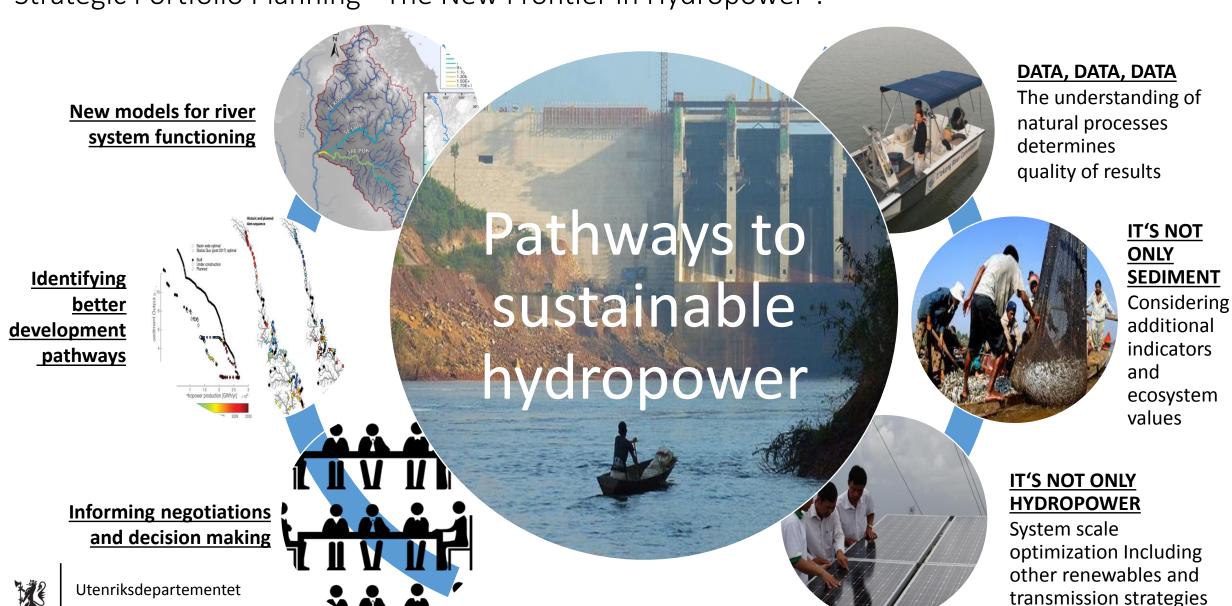
Private sector likes and needs rules!

Climate Change

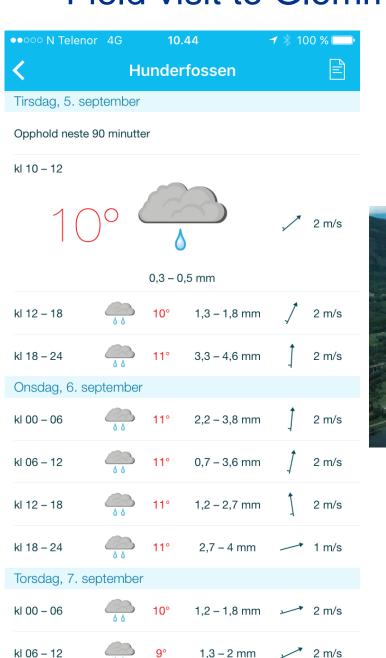
- New opportunity and risk
- Climate resilience
 - Investors-driven
 - Security of supply threathened
 - Risks increasing
 - Mitigation adaptation
 - Spillway design floods; Flexible operating range; Turbine re-sizing; Basin planning scale;
 Sustainability assessments; CC resilience IHA Protocol
 - Tools available for modelling reservoir emissions (G-res tool)
- Need for more reservoir capacity due to:
 - population growth
 - climate change
 - transition to renewable energy systems (HPP dams for storage and balancing)

New Frontiers

- Basin-wide planning:
 - How to?
 - Work with other sectors outside water
- Innovative design and operation rules for sustainable hydropower continued progress through multi-disciplinary approaches
- Social license to operate hydropower long-term
- Convergence of standards national and international (WB/IFC)
- Sediment management key technical issue
 - Use existing assets better storage capacity is lost to sedimentation at a similar rate as new storage is created by new reservoir
 - Innovative solutions for sediment management are available at a project and basin scale
- Full commitment and involvement from all stakeholders
 - Track I; 1 1/2; II
 - Clarify benefits and risks
- Value water
 - PPA pay for power MW not kWh


Way Forward

- Scaling up government support to basin-wide planning
 - Systems perspective
 - Need tools
- Performance standards
- Dialogue between sectors and experts
 - Engage with private sector
 - Outside the water sector finance
- Communication: translating technical solutions to policy and decision-making
- Stakeholder involvement empowerment of people
- Make the case!
 - Value water
 - Multi-sector benefits need to look beyond water
 - HP in the energy system
 - Help the Minister to become PM!


Conclusions

Strategic Portfolio Planning - The New Frontier in Hydropower?

Koehnken, 2012 | phys.org | worldfishcenter.org | mekongcommons.org

Field visit to Glomma & Laagen

Thank you!

Especially to Leif, Maria and Palakorn