

Climate resilience for hydropower

Opiha international hydropower association

Hydropower Sustainable Forum Oslo, Norway September 4-6, 2017

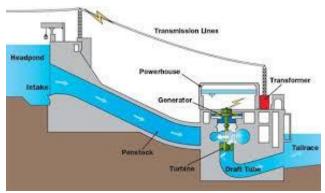
- 1. Background to climate resilience guidelines
- 2. Decision tree framework
- 3. Key steps in climate resilience assessment
- 4. Management plan for implementing climate resilience
- 5. Next steps for World Bank/IHA

IHA's work on climate change mitigation, adaptation and resilience

- **Emissions**: The hydropower sector has a tool to measure the impact of a reservoir on the carbon cycle in a river basin; the G-res tool, has been developed under a joint initiative between IHA and UNESCO.
- Mitigation: Hydropower is a renewable energy in its own right; in addition, storage projects enable other, variable renewables (solar and wind) – and larger storage means it has greater potential to enable more low carbon energy.
- **Resilience**: Any project evaluation needs to consider the climate-change risk to the services it is intended to provide. Guidelines for decision-making under uncertainty for new and modernization projects are under development.
- Adaptation: Ability to store and regulate water flow may provide adaptation services, to protect against increased flood/drought frequency and intensity.

Who is engaged in checking climate resilience for hydropower projects?

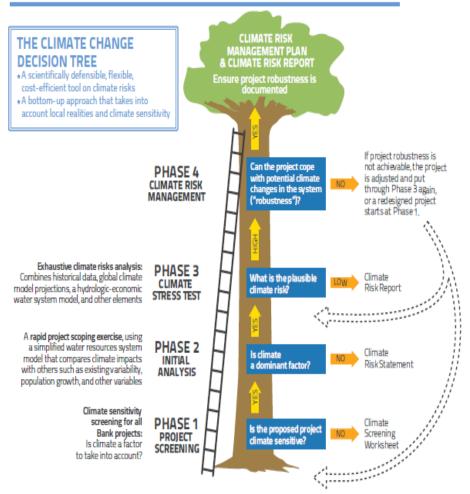
- Lending agencies
- Green bond financing agencies
- Scientific community
- Utilities



Hydropower Sustainable Forum Oslo, Norway September 5-6, 2017

Climate Resilience built into hydropower projects

- Spillway design floods
- Flexible operating range
- Turbine re-sizing
- Basin planning scale
- Sustainability assessments



Hydropower Sustainable Forum Oslo, Norway September 5-6, 2017

Approach to the Guidelines

- The World Bank Group requires Climate Change Resilience to be used as part of its project filtering process and is one of WBG's five strategic shifts for its climate work.
- Guidelines process therefore adapted from World Bank Decision Tree Framework with two Phases added.
- Adapted to be specific to hydropower.
- Typical engineering (pre-feasibility, feasibility, design, etc.) and ESIA stages of project analyses are shown in parallel to the six phases.
- Guidelines enhance existing hydropower design and implementation standards, manuals, protocols, bulletins, guidelines, etc.

IDENTIFYING AND MANAGING CLIMATE RISKS

Activity and phases		Key Climate Change Question	Engineering & ESIA Activities
Getting Started		What are the key climate change issues affecting this scheme?	Project conception
Phase 1	Project Screening	Is the proposed project climate sensitive?	Pre-Feasibility Study & Environmental and Social screening
Phase 2	Initial Analysis	Is climate a dominant factor?	Feasibility Study & ESIA – establishing general project characteristics with simplified climate data
Phase 3	Climate Stress Test	What is the plausible climate risk?	Feasibility Study & ESIA – refining general project characteristics with additional climate data
Phase 4	Climate and Disaster Risk Management	Can the project cope with the potential changes in the system?	Detailed stages of feasibility-level design (specific components), preparation of design drawings and tender documents, Environment & Social Management Plans
Monitoring, Reporting and Evaluation		How can resilience be tracked, monitored, evaluated, and updated?	Construction, operation & maintenance

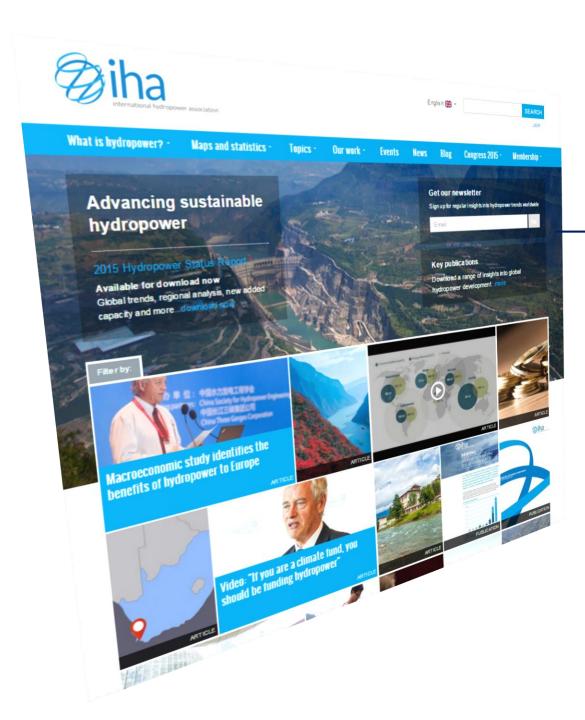
Steps in climate resilience guidelines

Next steps in climate resilience and adaption work in IHA

- Final documentation of the WBG guidelines (Sept 2017)
- Develop concise climate resilience assessment criteria for:
 - eligibility in the Climate Bonds Initiative
 - climate resilience measures in the Hydropower Sustainability Assessment Protocol
- Publish industry good practice guidelines on climate resilience, applicable to existing and future hydropower projects.

Hydropower Sustainable Forum Oslo, Norway September 5-6, 2017

Criteria for assessment of climate resilience


Analysis – What is the potential impact of climate change at the site; identified through reasonable modelling?

Scenarios – have findings of analysis been translated into scenarios at the site. Has a reasonable set of climate-change scenarios been developed and applied to project design?

Risk assessment – Have the scenarios been used to stress-test the project to identify vulnerabilities to safety (structural and societal) and the business model?

Define Adaptation Strategies or Solutions – What structural and functional measures are in place (or planned) to avoid or reduce the identified risks, based on their likelihood-impact weighting.

hydropower.org

Find out more about hydropower worldwide

Questions

