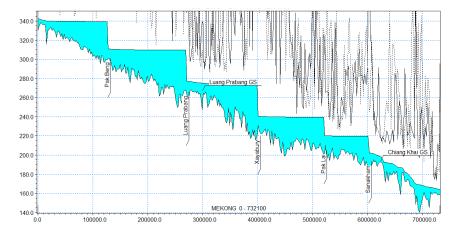
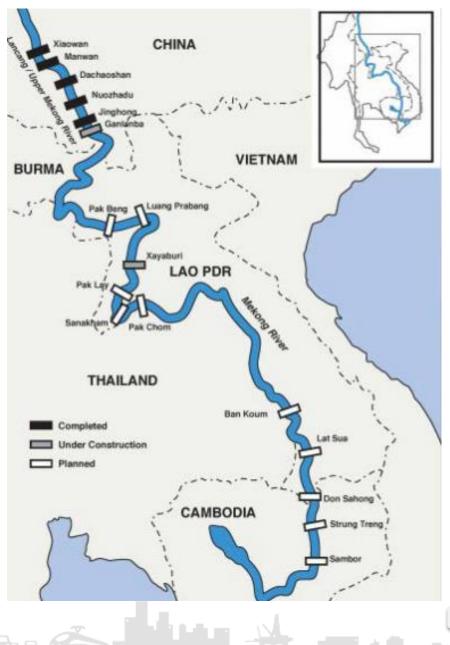
Sustainable Hydropower – Design & Operation


Christopher Grant

Oslo 4th September 2017


multiconsultgroup.com

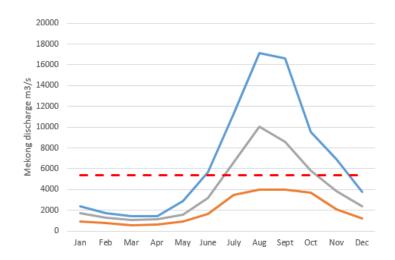
Mekong mainstream – planned projects

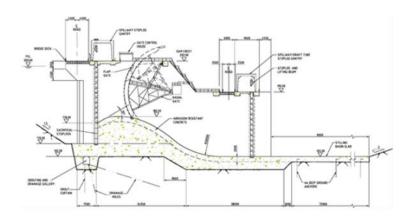
Planned upper cascade comprises:

- 5 projects commanding the available reach;
- Gross heads in the range 20 to 30 m;
- Creating reservoirs, largely within bank up to 100 km long

Mekong mainstream – key vulnerabilities

• Fish:

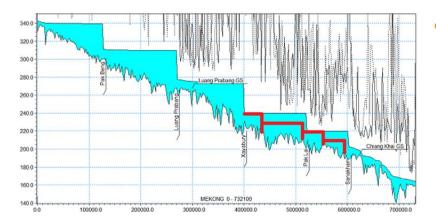

- zero flow velocity prevents the downstream drift of eggs and larvae - breaking the migration cycle.
- downstream fish mortality in turbines and undershot spillway gates


• Sediment:

- reservoirs trap coarse sands and gravels
- sand can be mobilised by flushing but this severely impacts ecology

• Water quality:

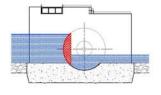
- increased temperature
- discharge of algae
- decreased oxygen in early years


Mekong mainstream – alternative concepts

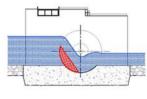
Natural bypass:

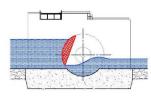
- Don Sahong commands one channel at Kone Falls
- A lower Sambor alternative with preserve a left bank by pass channel

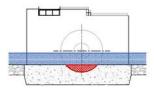
Sub divided projects:


- Lower heads
- Smaller reservoirs
- Ability to restore natural river conditions and 100% connectivity

Mekong Mainstream – sector gate barrage

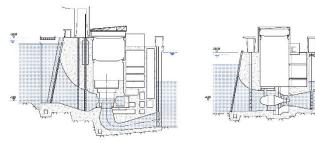


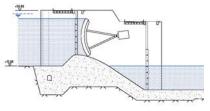

Nakdong Dalseong – S Korea

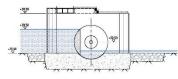

GENERATION

SPILLING

SCOURING

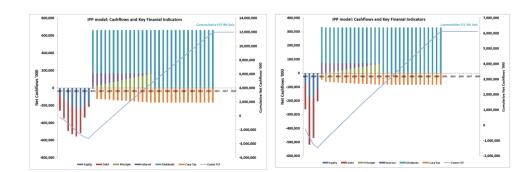

SHUT DOWN

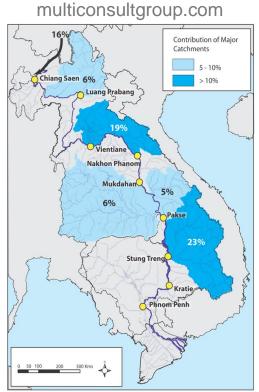

Yeoju – S Korea

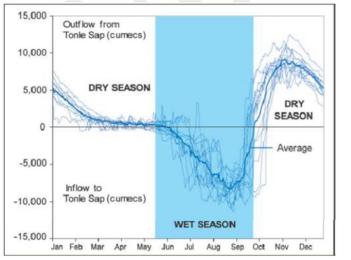

Mekong Mainstream – sector gate barrage

Comparison with a single scheme

- Construction cost:
 - Design comparison currently in progress, but early indications suggest <+45%

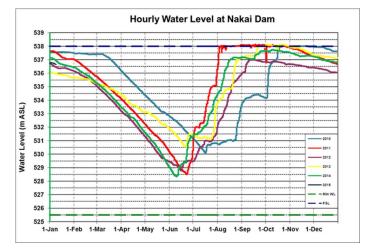



• Finance cost:


- Preliminary modelling suggests -30% if projects are constructed concurrently
- Energy impact
 - Tailwater impact -7%
 - 3 month shut down -30%

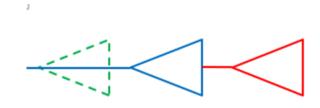
Mekong tributaries – seasonal storage

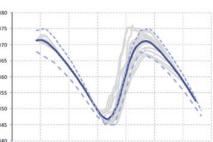
 Storage projects on the tributaries introduce loss of seasonality and floods in downstream discharges

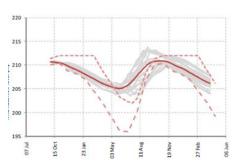


 Tonle Sap – one of the worlds most productive eco systems

Mekong tributaries – storage projects


• Single storage:


- operated to deliver dry season energy and capture wet season floods
- partial seasonality in discharge could be restored by taking less dry season energy



Cascade storage:

- the downstream project in a cascade does not need its seasonal storage
- keeping the reservoir full provides a higher average head and restores seasonal floods

PPA Implications

- If owners are paid for energy it creates an incentive to resist environmental objectives:
 - seasonal regulation
 - minimise compensation & fish by-pass flows
 - project (not river basin) optimisation
 - all environmental constraints must be defined before the project proceeds
- If owners were paid for available power, a central river basin authority could direct operations:
 - integrated river basin optimisation
 - plant can be despatched to suit system requirements
 - improved cascade management
 - multi criteria (non financial) decision making
 - adaptive environmental management for fish, water quality and sediment

multiconsultgroup.com

10

Contact details

Christopher Grant

Multiconsult UK Ltd International House Dover Place Ashford, Kent United Kingdom

Tel +44 7880 406216 <u>chris.grant@multiconsultgroup.com</u> <u>www.multiconsultgroup.com</u>