XAYABURI HYDROELECTRIC POWER PROJECT

Fish Migration Facilities

Vientiane, 15 July 2015 Dr Tobias Coe

CONTENT OF PRESENTATION

• General issues at Xayaburi

Data collection used to inform fish pass design

- Fish biomass and sampling
- Fish swimming ability tests

Principles of upstream fish pass design

- General Principles
- -/Designs at other dams
- Design principles for Xayaburi

Facilities for monitoring and proposed future monitoring

GENERAL ISSUES AT XAYABURI

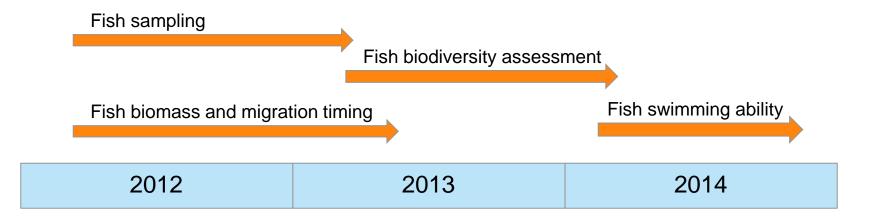
Maximum water to water head loss across the dam is 29 m

Maximum turbine flow 5000 m³/s. Eight turbine units

Dam has navigation lock, spillway, central intermediate block, powerhouse, fish pass

Large number of 'artisanal' fishermen

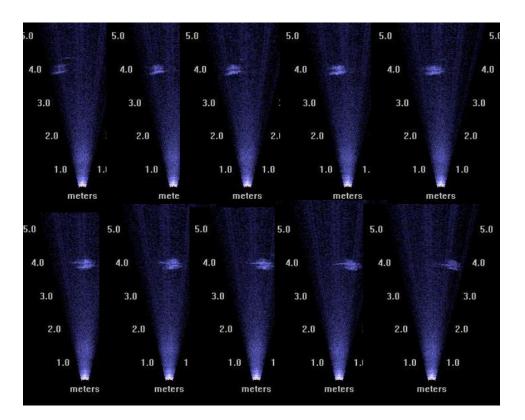
FISHT


GENERAL ISSUES AT XAYABURI

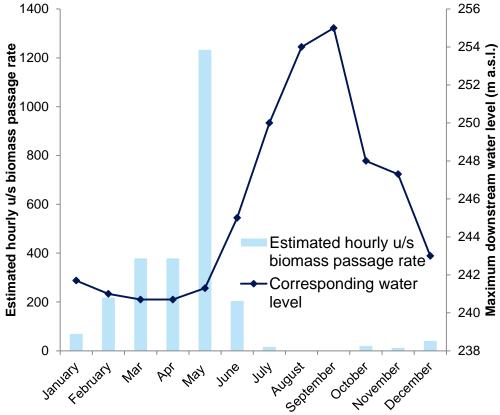
- Fish population very diverse
 - Multiple species from many familes
 - Total species assemblage not necessarily known
 - Range of body forms
- Huge range in fish size (30 3000 mm)
- Downstream water levels highly variable
- Different migration seasons for different species
- WHAT ELSE?!

DATA COLLECTION USED TO INFORM FISH PASS DESIGN

- Fish biomass and migration timing
- Fish sampling
- Fish swimming ability


5

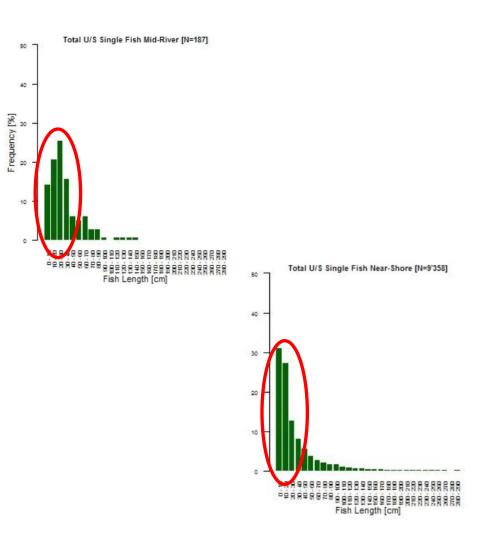
- Sonar acoustic 'DIDSON' camera used
- Ten field investigations
 - Spread over an entire year
 - Each field investigation 2 weeks



- Sonar acoustic 'DIDSON' camera used
- Ten field investigations
 - Spread over an entire year
 - Each field investigation 2 weeks
- Abundance and biomass quantified
- Primarily investigated upstream migration
- Conducted by Terraplant Ltd

FISHTE

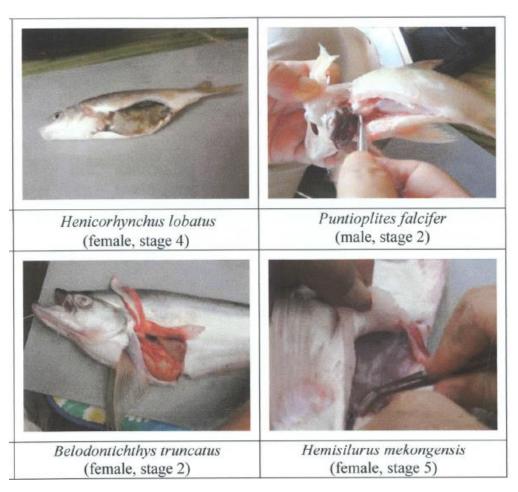
- Primary migration timings determined
- Biomass passage rates a maximum of 1,200 kg/hr in May. Peaked at 5,000 kg/hr in one survey
- Very large numbers and biomass of fish migrating



- Primary migration timings determined
- Biomass passage rates a maximum of 1,200 kg/hr in May. Peaked at 5,000 kg/hr in one survey
- Wide range of fish observed

FISHT

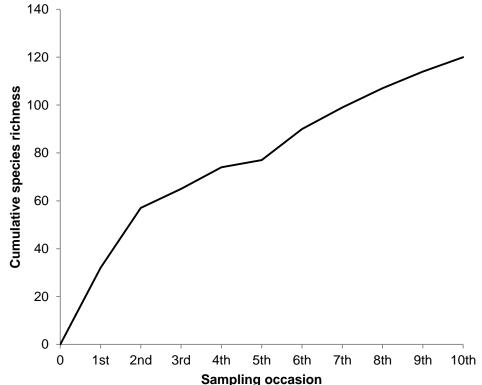
S PÖYRY


 71% in near shore and 60% in mid-river <30 cm

DATA COLLECTION – FISH SAMPLING

- Fish sampled using gill-netting. Also collected from local fishermen
- Conducted at same time as sonar camera work
- Species identified, measured and examined for maturation stage
- Carried out by TEAM Consulting

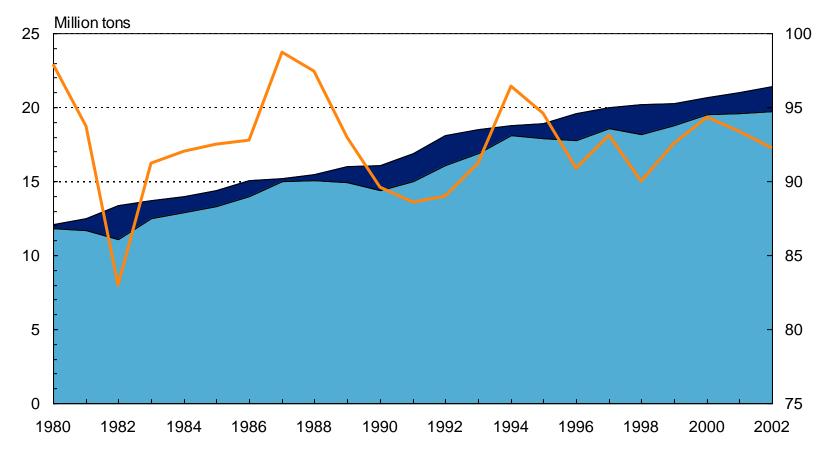
S PŐYRY



DATA COLLECTION – FISH SAMPLING

- Total of 120 species from 26 families found over the sampling period
- Highly likely more present
- Fish Biodiversity Assessment considered 308 species present
- Mekong is the third most species rich river system in the world
- Almost all species found at Xayaburi widely found throughout middle Mekong
- Many fish species highly migratory

FISH


POYRY

COMBINED AREA LINE CHART

FISHTE

INSERT GRAPH OF SPECIES NUMBERS WITH PICS OF COMMON FISH

12

Vientiane, 15.07.2015

DATA COLLECTION – DESIGN GUIDANCE LIST

- Information from fish biomass and sampling used, as well as 'Fish Biodiversity Assessment'
- IUCN RedList and Fish Base
- Focussed on species classified as vulnerable to hydropower development on the Mekong mainstream (Halls and Kshatriya 2009; ICEM 2010)
- 139 (45.1%) fish species were considered as Present at the Xayaburi HPP Site, 84 (27.3%) as Probably Present and 85 (27.6%) with Presence Questionable
- Design Guidance Species list identified
- 28 species belonging to 7 families

DATA COLLECTION – DESIGN GUIDANCE LIST

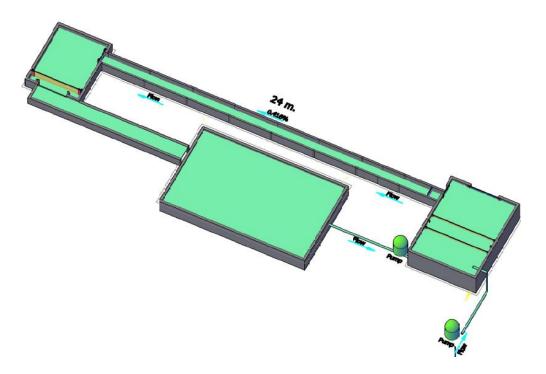
Family	Scientific Name	Design Guidance Category	Presence Xayaburi HPP	Origin Lao PDR	Red List Category
Target Species					
Clupeidae	Tenualosa thibaudeaui	А	Present	Native	VU
Cyprinidae	Aaptosyax grypus	Α	Probably Present	Native	CR
	Bangana behri	Α	Probably Present	Native	VU
	Hypsibarbus lagleri	Α	Present	Native	VU
	Probarbus jullieni	Α	Probably Present	Native	EN
Dasyatidae	Dasyatis laosensis	Α	Present	Native	EN
Pangasiidae	Pangasianodon gigas	Α	Probably Present	Native	CR
	Pangasianodon hypophthalmus	Α	Present	Native	EN
	Pangasius krempfi	А	Probably Present	Native	VU
Lead Species					
Cobitidae	Syncrossus helodes	Α	Present	Native	LC
	Yasuhikotakia modesta	Α	Present	Native	LC
Cyprinidae	Amblyrhynchichthys truncatus	Α	Present	Native	NE
	Cirrhinus molitorella	Α	Present	Native	NT
	Cyclocheilichthys enoplos	Α	Present	Native	LC
	Cyclocheilichthys furcatus	Α	Present	Native	LC
	Henicorhynchus lobatus	Α	Present	Native	LC
	Henicorhynchus siamensis	Α	Present	Native	LC
	Hypsibarbus malcolmi	Α	Present	Native	LC
	Hypsibarbus wetmorei	Α	Present	Native	LC
	Mekongina erythrospila	Α	Present	Native	NT
	Paralaubuca typus	Α	Present	Native	LC
	Puntioplites proctozystron	Α	Present	Native	LC
Gyrinocheilidae	Gyrinocheilus pennocki	Α	Present	Native	LC
Pangasiidae	Helicophagus waandersii	Α	Present	Native	NE
	Pangasius larnaudii	Α	Present	Native	LC
	Pangasius macronema	Α	Present	Native	LC
	Pseudolais pleurotaenia	Α	Present	Native	LC
Schilbeidae	Clupisoma sinense	Α	Present	Native	LC

An understanding of the swimming ability of fish species is critical for the effective design of a fish pass and is the first question that should be asked when designing a fish pass facility (Armstrong *et al.*, 2010).

Fish have different swimming 'gaits' and behaviours

Large background of studies into fish swimming

Literature consulted extensively. Collaborated with Prof. Paul Kemp



- Little known about swimming ability of Mekong fish species
- Historically, tests have used small flumes with rectilinear flows
- For a given species, inter-individual differences in swimming ability exist → don't design for Usain Bolt!
- Environmental factors influence swimming ability / speed. Temperature, pH, dissolved oxygen

- Large flume constructed on site
- Turbulent flow conditions
- Water pumped from river. Some recirculation, but most water through-flow
- Tanks at either end of flume with sluices – fine tune water levels and velocities

- Large flume constructed on site
- Turbulent flow conditions
- Water pumped from river. Some recirculation, but most water through-flow
- Tanks at either end of flume with sluices – fine tune water levels and velocities

- Large flume constructed on site
- Turbulent flow conditions
- Water pumped from river. Some recirculation, but most water through-flow
- Tanks at either end of flume with sluices – fine tune water levels and velocities
- Flume design is based on work at the Conte lab by Alex Haro *et al*

- Fish captured using help from local fishermen
- Fish brought for testing daily
- Captured using range of techniques
- Three different tests performed
 - Burst swimming speed tests (5 species)
 - 'Velocity barrier'

FISHTE

- Ucrit tests

- Burst swimming speed
- Wide range of velocities
- Five different species tested
 - Pa Sakang
 - Pa Soi
 - Pa Pak
 - Pa Kott
 - Pa Ort

- Burst swimming speed
- Wide range of velocities
- Five different species tested
 - Pa Sakang
 - Pa Soi
 - Pa Pak
 - Pa Kott
 - Pa Ort

S PÖYRY

 Tested in section of flume (standard method)

FISHTE

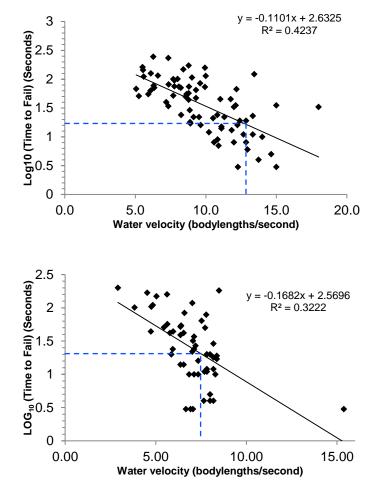
Introduced and swum until failure

Velocity barrier

- Three velocities tested (0.8, 1.2 and 1.6 m/s)
- >20 species tested
- Tagged externally using PIT tag

Velocity barrier

- Three velocities tested (0.8, 1.2 and 1.6 m/s)
- >20 species test
- Tagged externally using PIT tag
- Fish introduced in groups into pen at downstream end
- Left for one hour and movements recorded

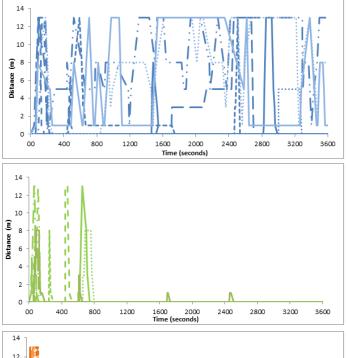


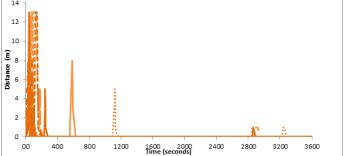
Burst swimming speed results

POYRY

FISH

- Swimming speeds high, between 8 20 bodylengths/second
- Graph the results, calculate where time to fail = 20 seconds = burst speed
- High proportion of fish didn't fail at the tested velocity
- Critically important parameter in fish pass design




Velocity barrier results

POYRY

FISH

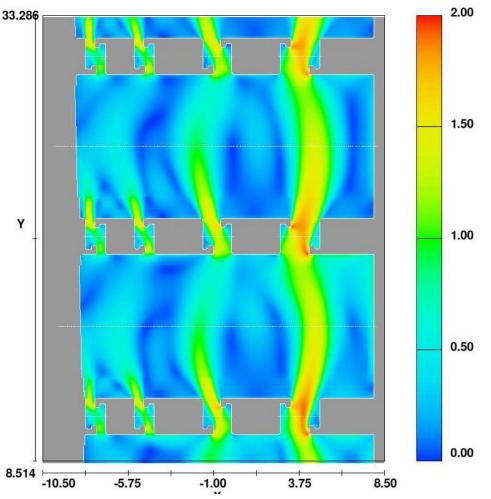
- For most species, much more movement up and down flume at lower velocities
- Movements at 1.6 m/s were infrequent for most species
- For 70% of fish species test, water velocity significantly impacted maximum distance moved up flume
- However, some species (Pa Kott, Pa Khae) still moved at 1.6 m/s

Xayaburi HPP, Fish Migration Facilities 26 Vientiane, 15.07.2015

Velocity barrier results

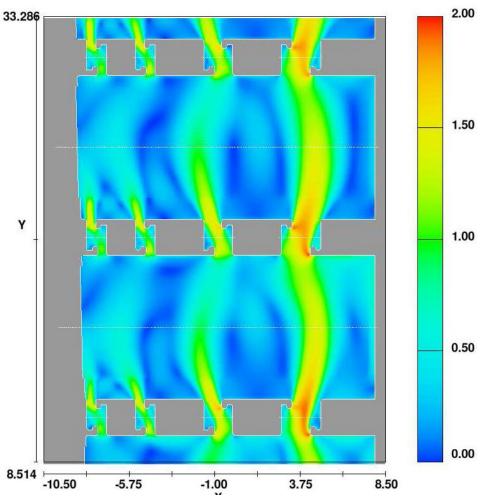
🕤 PÖYRY

FISH


- For most species, much more movement up and down flume at lower velocities
- Movements at 1.6 m/s were infrequent for most species
- For 70% of fish species test, water velocity significantly impacted maximum distance moved up flume
- However, some species (Pa Kott, Pa Khae) still moved at 1.6 m/s

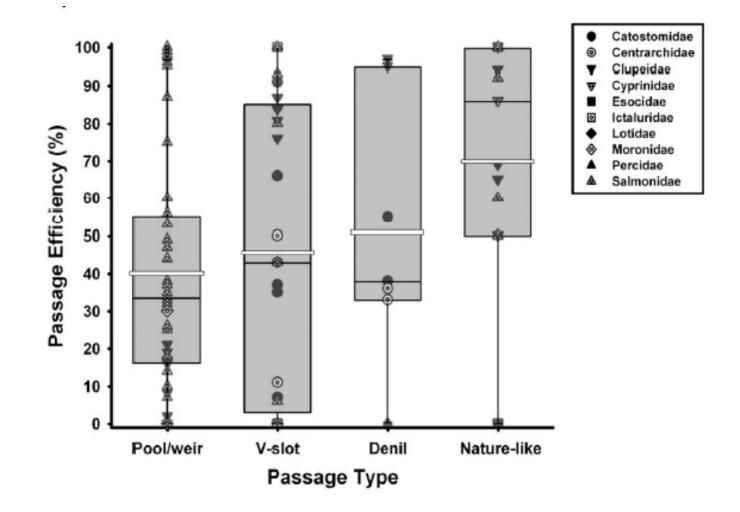
APPLICATION OF RESULTS TO DESIGN

- Swimming capabilities / preferences identified
- Range of velocities required in the fish passing facilities → heterogeneity
- Low velocities generally result in increased movement





APPLICATION OF RESULTS TO DESIGN


- Swimming capabilities / preferences identified
- Range of velocities required in the fish passing facilities → heterogeneity
- Low velocities generally result in increased movement
- Multiple slots reduces predation risk. Can be issue in tropical fish passes.

FISHTE

APPLICATION OF RESULTS TO DESIGN

S PŐYRY

• Heterogeneous flow conditions in the pass. Uses vertical slot hydraulics

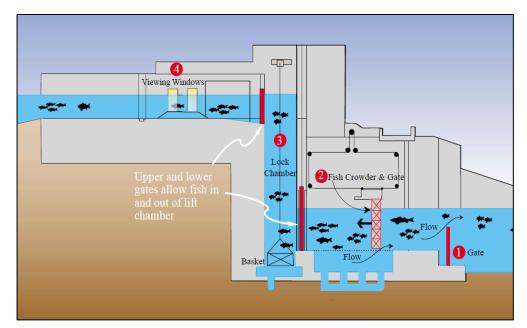
- Fish pass the whole height of the dam?
 - \rightarrow Evidence is that this does not work in the tropics
 - → Sequential loss of fish during passage up long fish passes has been previously found (Agostinho et al., 2007; Makrakis et al., 2007; Wagner et al., 2012)
- Shorter length of pass = larger pass, multiple slots, range of velocities
- Use man-power, rather than fish energy to move bulk of height of dam

Fish pass section

- Low slope (1%). Head drop 0.12 m between pools
- Velocity is low and variable between slots. Maximum is < 1.4 m/s in small slots

Fish pass section

S PÖYRY


- Low slope (1%). Head drop 0.12 m between pools
- Velocity is low and variable between slots. Maximum is < 1.4 m/s in small slots
- Pools very large (18 m wide and 10 m long). Energy density < 45 W/m3. Very low

FISHT

Fish locks

- At upstream end of fish pass
- Double lock (redundancy, more efficient, no waiting)
- Technically, a combination between fish lift and fish lock

Fish locks

- At upstream end of fish pass
- Double lock (redundancy, more efficient, no waiting)
- Technically, a combination between fish lift and fish lock

Fish locks

- At upstream end of fish pass
- Double lock (redundancy, more efficient, no waiting)
- Technically, a combination between fish lift and fish lock
- Each fish lock 5 m x 5 m. Minimum depth ????

FISHTE

- Fish swim up fish pass, through 'in-scales' into lock
- Crowders close, move forward and move fish into lock

Crowder Video 1 here

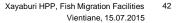
- Fish swim up fish pass, through 'in-scales' into lock
- Crowders close, move forward and move fish into lock
- Lock floods and screen at bottom moves up lock, moving the fish up to upper level
- Gate opens and fish swim out at level of reservoir
- System is flexible and adjustable

Crowder Video 2 here

GENERAL PRINCIPLES FOR THE DESIGN - MONITORING

GENERAL PRINCIPLES FOR THE DESIGN - MONITORING

GENERAL PRINCIPLES FOR THE DESIGN - MONITORING



CONTACT:

NAME: Tobias Coe TITLE: Dr MAIL: toby@fishtek.co.uk

