### SEDIMENT TRANSPORT IN THE LMB AND IMPLICATIONS FOR HYDROPOWER DEVELOPMENT AND MANAGEMENT

Asia 2016 Vientiane

Presented by Lois Koehnken



### **Overview of Presentation**

- Sediment transport in the LMB
  - 2009 2013 MRC Discharge & Sediment Monitoring Project
  - Sediment loads & timing
  - Changes associated with UMB development
- Risks associated with HP development
  - Geomorphic characteristics & vulnerabilities
- Mitigation approaches
  - Targets & objectives
  - Detailed hydrodynamic & sediment modelling through Initiative for Sustainable Hydropower
  - Modelling scenarios
  - Challenges

# Sediment Monitoring 2009 - 2013

- Cooperative monitoring by LMB countries
  - Cambodia, Lao PDR, Thailand, Viet Nam
- Discharge & suspended sediment
  - 17 sites; 28 34 samples/yr
- Bedload, grain-size distribution
  - Subset of sites
- Bed Material surveys
- Includes wet & dry years



### **Sediment Loads & Timing**



### **Sediment Loads & Timing**







### Sediment Loads & Timing = Pulse



- 60% of sediment transported in 2 months
- 80% transported in 4 months
- Onset coincides with major 'flush' from upper catchment



## Mekong is a Sediment Pulse System

- Long recognised as a 'Flood-pulse' system
- Also a 'Sedimentpulse' system
- 'Pulse' drives sediment inflow to Tonle Sap in Wet season
- Tonle Sap outflow feeds delta during Dry season





### Mekong is a Sand pulse system

#### Sand Coarse Silt Fine & Med Silt - Discharge 350000 10000 9000 Susp Sed Load (t/d) 300000 8000 Discharge (m<sup>3</sup>/s) 250000 7000 6000 200000 5000 150000 4000 3000 100000 2000 50000 1000 0 0 06-Jun-11 04-Jul-11 18-Jul-11 15-Aug-11 12-Sep-11 30-Sep-11 10-0ct-11 24-Oct-11 21-Nov-11 28-Nov-11 26-Dec-11 31-Aug-11 LP

Luang Prabang suspended sediment

#### Pakse suspended sediment



- Sand is predominant suspended grain-size during 'peak' flows upstream of Kratie
  - Bedload at all sites
- Sand is susceptible to reservoir trapping

### Kratie bedload sediment



### Mekong is a Sand pulse system



- Sand pulse observed moving through deep pools
- Channel fill moved & replenished on annual basis
- Sufficient energy to move sand in suspension at all river sites (E.g. Bravard, *et al.*, 2014)



Peteuil, et al., 2014

Conlan *et al.,* 2008

# Changes from Lancang Cascade

- Reduction in suspended sed loads
  - 60 to 10 Mt at Chiang Saen
  - 160 to 90 Mt at Kratie

- Changes to timing of sediment delivery at CS
  - Reduction of 'pulse'
  - Increase in dry season



Change reduces with distance downstream

# Flow changes

- Delayed onset of flood
- Increased frequency of water level fluctuations
- Most pronounced at Chiang Saen
- Reduces with distance downstream



- Developing HPs in LMB likely to lead to similar changes downstream
  - Transboundary issues
  - Guide mitigation measures & strategies

# Risks associated with HP development in the LMB

- Reduced sediment loads
- Alteration to sediment timing
- Increased flow fluctuations
- Already happening in upper LMB
- Risks vary by geomorphic characteristic
  - Bedrock reaches
  - Alluvial reaches
  - Mixed



(After Gupta 2004)

### **Bedrock Reaches**



### Characteristics

- Channel form controlled at large scale
- Alluvial insets
  - Widespread
  - Support a range of habitats
  - Provide channel fill
- Tributary inflows
  - Alluvial valleys & confluences

### Risks

- Reduced sediment load and altered timing can remove sandy insets
  - Loss of vegetation & riparian zone
- Affect channel depth & fill
- Promote tributary 'rejuvenation'

### **Alluvial Reaches**



### **Characteristics**

- Lack of large-scale channel control
- Alluvial deposits of variable age
  - 'Recent' sands
  - Older 'terraces' & floodplains
- Susceptible to scour & 'seepage' processes

### Risks

- Large scale channel changes
  - Deepening
  - Widening
  - Continue until 'adjusted' to new flow regime
- Bank erosion
  - Loss of habitats
  - Loss of riparian zone & uses
  - Risk to infrastructure
- Tributary rejuvenation
- Continue to 'adjust' with each change to flow regime

### Daily Water Level Changes in the LMB

- Reflects Lancang & existing tributary developments
- 75% of days WL change
  <0.2 m/day</li>
- 90% of days WL change
  <0.4 m/day</li>



- HP operations can change WL by m/hr
  - Frequency increased under peaking regimes
  - Step changes associated with increasing / reducing number of turbines operating
  - Increase risk of 'seepage' erosion during drawdown

# Mitigation approaches being considered by Initiative Sustainable Hydropower

- Focus on cascade in Northern Lao PDR (5-stations)
- Model sediment management and power station operation to:
  - Maintain sediment connectivity
  - Maintain seasonal sediment pulse
  - Maintain relationship between flow & sediment delivery
  - Minimise erosion associated with water level fluctuations
  - Maximise operational flexibility
- Will also consider water quality, fish aquatic ecology, & energy



## Sediment 'Scenarios' to be Modelled

- All scenarios include 2040 tributary and UMB developments to allow appropriate comparisons
- 5 Stations
  - Sediment sluicing / flushing during 1:2 year high flow events
  - Drawdown and sediment sluicing during peak flows (2 / year)
  - Limited 'hydropeaking' with ramping rules
  - Coordinated operation of cascades
- 3 Stations (Xayabouri most downstream)
  - Similar scenario(s) with fewer mainstream projects
- Qualitative assessment of potential for 'catchment' based mitigation
  - Extraction of sediments from HP storages
  - Reduction in sediment mining downstream
  - Alteration of locations of mainstream projects wrt tributaries

### **Results will inform Mitigation Guidelines**

- Feasibility of mitigation in context of UMB developments
- Mitigation effectiveness v investment
  - Include power modelling
- Infrastructure design & specifications
  - E.g., Gate sizes required to provide flow velocities
- Recommendations for operating rules
  - Ramping rates
  - Seasonal flow & sediment targets



# **Sediment Mitigation Challenges**

- Magnitude & timing of sediment delivery is already altered
  - Difficult to adopt 'annual' approach to operations
  - Requires operational flexibility
- Mekong is in state of change due to existing developments
  - Difficult to identify 'baseline' for mitigation targets
  - Modelling 'base case' will assist
- Large number of new developments (HP & others) will induce additional change & increase complexity of the system
- Impact of sand mining on channel needs to be considered in any sediment mitigation / management scenario
  - Requires a catchment approach

# THANK YOU!